1

2

3

4

5

6

7

8

9

[2M]

[2M]

[2M]

[2M]

[2M]

[10M]

[5M]

Determine the system matrix A and the state transition matrix.

 $X = \begin{bmatrix} -1 & -4 & -1 \\ -1 & -6 & -2 \\ -1 & -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} U; Y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} X.$ Find the transfer function [L1][CO1] [**10M**]

of the system.

10 Explain state model and derive the solutions of state equation. [L2][CO1] [**10M**]

R18

UNIT –II CONTROLLABILITY, OBSERVABILITY

1	a)	Define controllability.	[L1][CO2]	[2M]
		What is need for observability test?	[L1][CO2]	[2M]
	c)	State the reality between controllability and observability.	[L2][CO2]	[2M]
	d)	State the condition for observability by Kalman's method.	[L2][CO2]	[2M]
	e)	What canonical form of state model?	[L1][CO2]	[2M]
2	a)	Define Controllability. What are the tests to find the controllability of a	[L1][CO2]	[5M]
		system?		
	b)	The state equation is given by $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} U$. Test for	[L4][CO2]	[5 M]
_		controllability.		
3	a)	Define Observability. What are the tests to find the observability of a given	[L1][CO2]	[5M]
	1 \	system?		r ~ 1 4 1
4	D)	Test observability for $\vec{x_1} = -2x_1 + x_2 + U$, $\vec{x_2} = -x_2 + U$ and $y = x_1 + x_2$.	[L4][CO2]	
4		A System is represented by the state model:	[L1][CO2]	[10M]
		$ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} U; y(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $ Check whether system is (a) Completely Controllable (b) Completely Observable.		
5		A System is represented by the state model:	[L4][CO2]	[10 M]
		$ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & -1 & -3 \\ 0 & -2 & 1 \\ -7 & -8 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} U(t); y(t) = \begin{bmatrix} 4 & 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}. \text{Test} $ whether the system is (a) Completely Controllable (b) Completely Observable		
6		Consider the system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ the output is given by	[L1][CO2]	[10 M]
		$Y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$ (a) Show that the system is not completely observable (b) Show that the system is completely observable if the output is given $by \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix}.$		
7		State and prove the principle of duality between controllability and	[L2][CO2]	[10M]
		observability.		[TANKT]
8		5		[10]/[]
0		The state model of a system is given by $\begin{bmatrix} \dot{x}_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$	[L2][CO2]	[10M]

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}; \ Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 Convert the

state model to canonical form

9 The state model of a system is given by

[L1][CO2] [10M]

$$\dot{x} = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} x + \begin{bmatrix} 11 \\ 1 \\ -14 \end{bmatrix} u; Y = \begin{bmatrix} -3 & -5 & -2 \end{bmatrix} x.$$
 Find the canonical format representation.

10Write the effect of state feedback on controllability and observability.[L1][CO2][10M]

UNIT –III STATE FEEDBACK CONTROLLERS AND OBSERVERS

1 2 3	 a) b) c) d) e) 	What is pole placement by state feedback? Define state observer? What is the need for state observer? Define full order & reduced order observer. What is the necessary condition to be satisfied for design of state observer? Explain the design of pole placement controller using state feedback. Consider a linear system described by the transfer function $\frac{Y(s)}{U(s)} = \frac{10}{s(s+1)(s+2)}$. Design a feedback controller with a state feedback, so that the	[L1][CO3] [L1][CO3] [L1][CO3] [L1][CO3] [L1][CO3] [L1][CO3] [L1][CO3]	[2M] [2M] [2M] [2M] [2M] [10M]
		closed loop poles are placed at -2, -1 \pm j1.		
4		A single input system is described by the following state equation	[L1][CO3]	[10M]
		$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} U.$ Design a state feedback controller which will give closed loop poles at -1±j2, 6.		
5		Explain the full order and reduced order observer.	[L1][CO3]	[10M]
6		$As\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} U; Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$ Convert the state model to observable phase variable form.	[L2][CO3]	[10 M]
7		The state model is given by	[L2][CO3]	[10 M]
		$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} U; Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$ Convert the state model to controllable phase variable form.	[][000]	
8		Consider the system described by the state model x=Ax; y=Cx; Where	[L1][CO3]	[10M]
		A= $\begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}$; C=[1 0]. Design a full order state observer. The desired eigen values for the observer matrix are $\mu_1 = -5$; $\mu_2 = -5$.		
9		What is state observer? Explain about state observer.	[L1][CO3]	[10 M]
10		Consider the system defined by	[L1][CO3]	
-		$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t); y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$ Design a full order state observer assuming the desired poles for the observer are located at -10,-10,-15.		

UNIT –IV ANALYSIS OF NON LINEAR SYSTEMS

1	a)	How nonlinearities are introduced in the system.	[L1][CO4]	[2M]
	b)	What are the methods available for the analysis of nonlinear system?	[L1][CO4]	[2M]
	c)	What is dead zone?	[L1][CO4]	[2M]
	d)	What is phase trajectory?	[L1][CO4]	[2M]
	e)	How limit cycles are determined from phase portrait.	[L1][CO4]	[2M]
2		Derive the describing function of back lash nonlinearities.	[L6][CO4]	[10M]
3		Derive the describing function of saturation nonlinearities.	[L6][CO4]	[10 M]
4		Derive the describing function of relay with dead zone.	[L6][CO4]	[10M]
5		Explain the classification of non-linear systems.	[L2][CO4]	[10 M]
6		With the help of graphical representations, explain about various common	[L2][CO4]	[10 M]
		physical nonlinearities.		
7		Explain the method of isoclines for the construction of phase trajectories.	[L2][CO4]	[10 M]
8		What is singular point? Explain various types of singular points.	[L1][CO4]	[10 M]
9		A linear second order servo is described by the equation	[L5][CO4]	[10 M]
		$e + 2\zeta \omega_n e + \omega_n^2 e = 0$, Where, $\zeta = 0.15$, $\omega_n = 1$ rad/sec, $e(0) = 1.5$		
		and $\dot{e}(0) = 0$. Determine the singular point construct the phase trajectory using method of isoclines.		

- **10** a) Explain in detail about various characteristics of non-linear systems. [L2][CO4] [5M]
 - b) Describe various types of singular points and their corresponding phase [L1][CO4] [5M] portraits with rough sketches

UNIT –V STABILITY ANALYSIS

1 2 3	a) b) c) d) e)	State Lyapunov instability theorem. State Lyapunov stability theorem. What is the condition for stability in Lyapunov direct method? What are the linear autonomous system? Define positive definiteness of a system. State and prove Lyapunov stability theorem Show that the asymptotically stable condition of a linear system $\dot{x} = Ax$ at origin is: $A^TP + PA = -Q$. Where P&Q are the symmetric positive definite matrices.	[L5][CO5] [L5][CO5] [L1][CO5] [L1][CO5] [L1][CO5] [L5][CO5] [L2][CO5]	[2M] [2M] [2M] [2M] [2M] [10M]
4		Consider the non-linear system: $\dot{x_1} = x_2$, $\dot{x_2} = -x_1 - x_1^2 x_2$ investigate the	[L4][CO5]	[10 M]
5		stability of this non-linear system around its equilibrium point at origin. Use Krasovskii's theorem to show that the equilibrium state x=0 of the system described by $\dot{x_1} = -3x_1 + x_2$, $\dot{x_2} = x_1 - x_2 - x_2^3$ is asymptotically stable in the large.	[L2][CO5]	[10 M]
6	a) b)	State and prove Lyapunov instability theorem. Show that the following quadratic form is positive definite $V(x) = 8x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 - 4x_1x_3 - 2x_2x_3$	[L5][CO5] [L1][CO5]	[5M] [5M]

Course Code: 18EE0223

Show the graphical representation of stability, asymptotic stability and [L1][CO5] [5M] 7 a) instability Define quadratic form and Hermitian form. [L1][CO5] **[5M]** b) Using Lyapunov analysis, determine the stability of the equilibrium state [L5][CO5] [10M] 8 of the system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Examine the stability of the system described by the following equation by 9 [L4][CO5] [10M] Krasovskii's theorem $\dot{x_1} = -x_1 \ \dot{x_2} = x_1 - x_2 - x_2^3$ State and explain about Lyapunov stability for non-linear system. [L2][CO5] [10M] 10

> Prepared by: Mrs. P Nandhini