SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Modern Control Theory (18EE0223)
Year \& Sem: III-B.Tech \& II-Sem

Course \& Branch: B.Tech - EEE
Regulation: R18

UNIT -I
 STATE VARIABLE DESCRIPTION AND SOLUTION OF STATE EQUATION

a) Define state variable.
b) Write any two properties of state transition matrix.
c) What are the advantages of state space representation? Compare with transfer function representation.
d) What is state diagram?
e) Define state model.

Consider the following transfer function of a system $\frac{y(s)}{U(s)}=\frac{s+6}{s^{2}+6 s+6}$. Obtain state space representation of the system.
a) Explain state model and prove state model representation is not unique with example.
b) Construct a state model for a system characterized by the differential
[L6][CO1] equation $\quad \frac{d^{3} y}{d t^{3}}+6 \frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}+6 y=\frac{d^{3} u}{d t^{3}}+8 \frac{d^{2} u}{d t^{2}}+17 \frac{d u}{d t}+8 u$.

4
a) Derive a solution of homogeneous state equation.
b) Obtain the state transition matrix of $A=\left[\begin{array}{ccc}-6 & 1 & 0 \\ -11 & 0 & 1 \\ -6 & 0 & 0\end{array}\right]$.
[L3][CO1] [5M]
[L1][CO1]
[L2][CO1]

5 a) State and prove the various properties of state transition matrix.
b) Computer the solution of state equation $X=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] X+\left[\begin{array}{l}1 \\ 1\end{array}\right] U ; X_{0}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
[L1][CO1]
[10M]
(a) $\frac{Y(s)}{U(s)}=\frac{10(s+4)}{s(s+1)(s+3)}$
(b) $\frac{Y(s)}{U(s)}=\frac{10}{s^{3}+4 s^{2}+2 s+1}$
$X=\left[\begin{array}{lll}-1 & -4 & -1 \\ -1 & -6 & -2 \\ -1 & -2 & -3\end{array}\right] X+\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] U ; Y=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] X$. Find the transfer function of the system.

UNIT -II

CONTROLLABILITY, OBSERVABILITY

1
a) Define controllability.
[L1][CO2]
[2M]
b) What is need for observability test?
[L1][CO2] [2M]
c) State the reality between controllability and observability.
[L2][CO2] [2M]
d) State the condition for observability by Kalman's method.
[L2][CO2] [2M]
e) What canonical form of state model?
[L1][CO2] [2M]
a) Define Controllability. What are the tests to find the controllability of a
[L1][CO2] [5M] system?
b)

The state equation is given by $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 10\end{array}\right] U$. Test for controllability.
3 a) Define Observability. What are the tests to find the observability of a given
[L1][CO2] [5M] system?
b) Test observability for $\dot{x_{1}}=-2 x_{1}+x_{2}+U, \dot{x_{2}}=-x_{2}+U$ and $\mathrm{y}=x_{1}+x_{2}$.
[L4][CO2] [5M] A System is represented by the state model:
[L4][CO2] [5M]

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] U ; y(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Check whether system is (a) Completely Controllable
(b) Completely Observable.

A System is represented by the state model:
[L4][CO2] [10M]

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -1 & -3 \\
0 & -2 & 1 \\
-7 & -8 & -9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] U(t) ; \quad y(t)=\left[\begin{array}{lll}
4 & 6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] . \quad \text { Test }
$$

whether the system is (a) Completely Controllable
(b) Completely Observable

Consider the system $\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3}\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ the output is given by
[L1][CO2] [10M]

$$
Y=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

(a) Show that the system is not completely observable
(b) Show that the system is completely observable if the output is given

$$
\operatorname{by}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

State and prove the principle of duality between controllability and observability.
8 The state model of a system is given by
[L2][CO2] [10M]
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right][u] ; \quad Y=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ Convert the state model to canonical form
$\dot{x}=\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right] x+\left[\begin{array}{c}11 \\ 1 \\ -14\end{array}\right] u ; Y=\left[\begin{array}{lll}-3 & -5 & -2\end{array}\right] x$. Find the canonical format representation.
10 Write the effect of state feedback on controllability and observability.
[L1][CO2] [10M]

UNIT -III

STATE FEEDBACK CONTROLLERS AND OBSERVERS

1 a) What is pole placement by state feedback?
b) Define state observer?
c) What is the need for state observer?
d) Define full order \& reduced order observer.
e) What is the necessary condition to be satisfied for design of state observer?

7 The state model is given by

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-2 & -3 & 0 \\
0 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] U ; \quad Y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text {. Convert the }
$$ state model to controllable phase variable form.

8 Consider the system described by the state model $x=A x ; y=C x$; Where $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & -2\end{array}\right] ; C=\left[\begin{array}{ll}1 & 0\end{array}\right]$. Design a full order state observer. The desired eigen values for the observer matrix are $\mu_{1}=-5 ; \mu_{2}=-5$.
9 What is state observer? Explain about state observer.
[L1][CO3]
[10M]
10 Consider the system defined by
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -5 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] u(t) ; y(t)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Design a full order state observer assuming the desired poles for the observer are located at $-10,-10,-15$.

UNIT -IV

ANALYSIS OF NON LINEAR SYSTEMS

1
a) How nonlinearities are introduced in the system.
b) What are the methods available for the analysis of nonlinear system?
c) What is dead zone?
d) What is phase trajectory?
e) How limit cycles are determined from phase portrait.

Derive the describing function of back lash nonlinearities.
Derive the describing function of saturation nonlinearities.
Derive the describing function of relay with dead zone.
Explain the classification of non-linear systems.
With the help of graphical representations, explain about various common physical nonlinearities.
Explain the method of isoclines for the construction of phase trajectories. What is singular point? Explain various types of singular points.
[L2][CO4] [10M]

A linear second order servo is described by the equation $\ddot{e}+2 \zeta \omega_{n} \dot{e}+\omega_{n}^{2} e=0$ Where, $\zeta=0.15, \omega_{n}=1 \mathrm{rad} / \mathrm{sec}, \mathrm{e}(0)=1.5$
and $\dot{e}(0)=0$. Determine the singular point construct the phase trajectory using method of isoclines.
10
a) Explain in detail about various characteristics of non-linear systems.
[L2][CO4]
[5M]
b) Describe various types of singular points and their corresponding phase [L1][CO4]
[5M] portraits with rough sketches

UNIT -V
 STABILITY ANALYSIS

1 a) State Lyapunov instability theorem.
b) State Lyapunov stability theorem.
c) What is the condition for stability in Lyapunov direct method?
d) What are the linear autonomous system?
e) Define positive definiteness of a system.

3 Show that the asymptotically stable condition of a linear system $\dot{x}=A x$ at origin is: $A^{T} P+P A=-Q$. Where $\mathrm{P} \& \mathrm{Q}$ are the symmetric positive definite matrices.
Consider the non-linear system: $\dot{x_{1}}=x_{2}, \dot{x_{2}}=-x_{1}-x_{1}^{2} x_{2}$ investigate the stability of this non-linear system around its equilibrium point at origin.
Use Krasovskii's theorem to show that the equilibrium state $\mathrm{x}=0$ of the system described by $\dot{x_{1}}=-3 x_{1}+x_{2}, \quad \dot{x_{2}}=x_{1}-x_{2}-x_{2}^{3}$ is asymptotically stable in the large.

6
6 a) State and prove Lyapunov instability theorem.
b) Show that the following quadratic form is positive definite $\mathrm{V}(\mathrm{x})=8 x_{1}^{2}+$
[L5][CO5] [2M]
[L5][CO5] [2M]
[L1][CO5] [2M]
[L1][CO5] [2M]
[L1][CO5] [2M]
[L5][CO5] [10M]
[L2][CO5] [10M]
[L4][CO5] [10M]
[L2][CO5] [10M]

7 a) Show the graphical representation of stability, asymptotic stability and [L1][CO5] [5M] instability
b) Define quadratic form and Hermitian form.
[L1][CO5]
[5M]
8 Using Lyapunov analysis, determine the stability of the equilibrium state [L5][CO5] of the system $\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
9 Examine the stability of the system described by the following equation by [L4][CO5] Krasovskii's theorem $\dot{x_{1}}=-x_{1} \quad \dot{x_{2}}=x_{1}-x_{2}-x_{2}^{3}$
10 State and explain about Lyapunov stability for non-linear system. [L2][CO5] [10M]

